# 2M/CHE-150 (Th) Syllabus-2023

## 2025

( May-June )

# FYUP: 2nd Semester Examination

**CHEMISTRY** 

(Major)

Part-A (Theory)

(Introductory Chemistry—II)

(CHE-150)

*Marks*: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

## UNIT-I

# (Inorganic Chemistry—II)

( Marks: 19)

1. (a) What is packing fraction? How does it account for nuclei stability? Calculate packing fraction, mass defect and energy released in the formation of Argon atom <sup>40</sup><sub>18</sub> Ar. Isotopic mass of Ar = 39.96238 a.m.u. 1+1+2=4

(Turn Over)

- (b) What are 'nuclear particles'? Give examples.
- (c) Complete and balance the following redox reaction by ion-electron method:

$$FeCl_2 + K_2Cr_2O_7 \xrightarrow{H^+}$$

- (d) Define the term 'equivalent weight' for an oxidizing agent. Calculate the equivalent weight of KMnO<sub>4</sub> in acidic, slightly alkaline and strongly alkaline media.
- (e) Identify the 'oxidizing' and 'reducing agent' in the following redox reaction: 1
   Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> + I<sub>2</sub> → Na<sub>2</sub>S<sub>4</sub>O<sub>6</sub> + NaI

#### OR

- 2. (a) Define the term 'nuclear fission' reaction with example. Why is  $^{238}_{92}$ U not suitable for nuclear fission reaction?
  - (b) What do you understand by the term 'half-life' of a radioactive substance? The half-life of radium (molar mass 226 g mol<sup>-1</sup>) is 1580 years. Show that 1 g of radium gives  $3.70 \times 10^{10}$  disintegration per second.

- (c) What are the different kinds of radioactive disintegration possible for a radioactive element?
- (d) What are 'redox reactions'? State whether the following is/are redox reaction or not?
  - (i)  $CuSO_4 + 2NaOH \longrightarrow Na_2SO_4 + Cu(OH)_2$

1

1

1

2

1

- (ii)  $CuSO_4 + KI \longrightarrow CuI + I_2 + K_2SO_4$
- (e) Calculate the oxidation number of Fe in FeCl<sub>3</sub> and FeSO<sub>4</sub>.
- (f) Complete and balance the following redox reaction by ion-electron method:

$$C_2O_4^{2-} + MnO_4^- \xrightarrow{H^+}$$

- 3. (a) Explain how Ca<sup>2+</sup>, Sr<sup>2+</sup> and Ba<sup>2+</sup> ions are selectively precipitate from a solution in the presence of Mg<sup>2+</sup> ions.
  - (b) What is dichrometry? Give example.

    What types of indicator are used by this method?

    1+1=2
  - (c) What do you understand by the term 'equivalence point' of a titration?

D25/1204

(Continued)

1+1=2

1

2

D25/1204 (Turn Over)

| (d)           | Bronsted-Lowry concept. Write down the conjugate acid-base for CH <sub>3</sub> COOH and NH <sub>3</sub> .                                     |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| (e)           | Explain the phenomenon of 'levelling effect' using a suitable solvent. 2                                                                      |
| (f)           | What is 'symbiosis'? Give example.                                                                                                            |
|               | OR                                                                                                                                            |
| <b>4.</b> (a) | Define 'normality' for a standard solution. How would you prepare a standard solution of $0.5~N~\rm K_2Cr_2O_7$ in a 250 ml solution? $1+1=2$ |
| (b)           | How do you estimate the amount of oxalic acid by permanganometry method?                                                                      |
| (c)           | What do you understand by the term 'end point' of a titration?                                                                                |
| (d)           | Taking a suitable solvent, define acid and base according to Franklin solvent system concept.                                                 |
| (e)           | Which among the following is a stronger Lewis acid?  (i) Fe <sup>2+</sup> or Fe <sup>3+</sup> (ii) K <sup>+</sup> or Na <sup>+</sup>          |
| (f)           | Predict whether $NH_3$ is a soft base or<br>a hard base in the following reaction: 1<br>$CH_3Hg^+NH_3 + H^+ \longrightarrow NH_4 + CH_3Hg^+$  |
| D25/120       |                                                                                                                                               |

### UNIT-II

## (Organic Chemistry-II)

( Marks: 18)

- **5.** (a) Predict whether 3-chlorohexane will be optically active or not? Give reasons for your answer.
  - (b) Write the R- and S-configurations of the following molecules: 1+1=2

- (c) What is meant by racemic modification? Illustrate with the help of an example.
- (d) Give two points of differences between E1 and E2 mechanisms.
- (e) When 1-chlorobutane is heated with alc KOH, the formation of the product is not governed by Saytzeff's rule. Justify.

(Turn Over)

2

1

2

1

#### OR

- 6. (a) Draw the Newman projection formula of—
  - (i) eclipsed 2,3-dichlorobutane;
  - (ii) anti 2,3-dibromobutane.

1+1=2

(b) Write E and Z configurations of each of the following: 1+1=2

- (c) What are 'meso' compounds? Explain with a suitable example.
- (d) Discuss the mechanism of a reaction which follows  $E_{CB}^1$  pathway. Why is the reaction known as  $E_{CB}^1$ ? 2+1=3
- 7. (a) Predict which of the following systems will be aromatic and which is not? ½×4=2









(b) Write the mechanism of the following reaction:

(c) What is a nitrating mixture?

1

2

- (d) Why are nucleophilic substitution reactions of chlorobenzene difficult? 2
- (e) Arrange the following molecules in order of increasing reactivity towards S<sub>N</sub>2 reactions. Give reasons: 1+2=3

$$CH_3$$
— $Cl$ ,  $CH_3$ — $Cl$ ,  $CH_3$ — $Cl$ 

OR

**8.** (a) Why is phenol *ortho*- and *para*-directing towards electrophilic substitution reaction?

2

(b) Write the mechanism of the following reaction:

2

1

- (c) State Hückel's rule of aromaticity.
- (d) Which among the following pairs will react faster during  $S_N1$  reaction? Give reasons.  $1\frac{1}{2}+1\frac{1}{2}=3$

(i) 
$$H_3C$$
— $CH_3$  and  $H_3C$ — $CH_3$ 

(ii) 
$$C_2H_5$$
  $C_3H_5$  and  $CH_3$ — $CH_2$ — $CH_2$ — $CH_3$ 

(e) Taking a suitable example, show the mechanism of S<sub>N</sub>i reaction.

#### UNIT-III

### (Physical Chemistry—II)

( Marks: 19)

9. (a) Define the following terms:

 $1 \times 3 = 3$ 

- (i) Spontaneous process
- (ii) State function
- (iii) Inversion temperature
- (b) Derive the necessary relation and calculate the difference between  $C_P$  and  $C_V$  for 3 moles of an ideal gas. 2+1=3
- (c) How many calories of heat are required to heat 1 mole of argon from 40 °C to 100 °C at—
  - (i) constant volume;
  - (ii) constant pressure?

Molar heat capacity of Ar at constant volume =  $3 \text{ cal } k^{-1}$ 

Molar heat capacity of Ar at constant pressure = 5 cal  $k^{-1}$  2+2=4

#### OR

10. (a) State the first law of thermodynamics and derive its mathematical equation.

1+2=3

(Turn Over)

(Continued)

D25/1204

- (b) Calculate the pressure-volume work performed by the system during reversible isothermal expansion of 5 moles of an ideal gas from 5 litres to 10 litres at 20 °C.
- (c) Deduce the relationship

$$\mu = \frac{1}{C_P} \left( \frac{\partial H}{\partial P} \right)_T$$

where  $\mu$  is the Joule-Thomson coefficient.

11. (a) Prove that

$$\left\{\frac{\partial (\Delta H)}{\partial T}\right\}_{P} = \Delta C_{P}$$

- (b) What are adsorption isotherms? Give two assumptions used in the derivation of Langmuir adsorption isotherm. 1+2=3
- (c) Define the following and give examples:

1½×2=3

3

4

3

- (i) Enthalpy of combustion
- (ii) chemisorption

OR

12. (a) State Hess' law of constant heat summation.

2

(Continued)

- (b) Deduce the Langmuir adsorption isotherm.
- (c) Calculate the heat change accompanying the transformation of C (graphite) to C (diamond). Given that the heat of combustions of graphite and diamond are 393.5 kJ mol<sup>-1</sup> and 395.4 kJ mol<sup>-1</sup> respectively.

3

\*\*\*